

COURS.

1.

III- ECRITURE EXPONENTIEUE.

<u>I°- Notation ...</u>

2°- Définition ...

3°- Propriétés ...

4°- con/équence/...

NOMBRES COMPLEXES.

IV-NOMBRES COMPLEXES ET TRANSFORMATIONS.

I°- Translation...

2°- Homothétie...

<u>3°- Rotation...</u>

III- FORME EXPONENTIEUE.

1°- Notation :

Pour tout réelheta, on note $e^{i heta}$ le nombre complexe $\cos heta$ + i $\sin heta$

$$e^{i\theta} = \cos\theta + i \sin\theta$$

désigne donc le nombre complexe de module 1 et d'argument θ :

$$|e^{i\theta}|$$
 = 1 et Arg $(e^{i\theta})$ $\equiv \theta$ [2 π].

Exemples:
$$e^{i0} = 1$$
; $e^{\frac{i\pi}{2}} = i$; $e^{i\pi} = -1$; $e^{i2\pi} = 1$; $e^{-\frac{i\pi}{2}} = -i$.

2°- Définition :

Un nombre complexe Z non nul de module r>0 et d'argument θ s'écrit alors sous la forme $Z = re^{i\theta}$

Cette écriture est appelée une forme exponentielle de Z.

3°- Propriétés :

• Pour tout réel θ et tout entier k ; on a

$$e^{i\theta} = e^{i(\theta+2k\pi)} et - e^{i\theta} = e^{i(\theta+(2k+1)\pi)}$$

- ullet Pour tout réelheta ; on a $\overline{(e^{i heta})}=e^{-i heta}$
- Pour tout réels θ et θ' et tout $n \in \mathbb{Z}$; on a

$$ightharpoonup e^{i\theta} \cdot e^{i\theta'} = e^{i(\theta + \theta')}$$

$$ightharpoonup \frac{1}{e^{i\theta}} = e^{-i\theta}$$

$$(e^{i\theta})^n = e^{in\theta} \qquad \rightarrow (\cos\theta + i \sin\theta)^n = \cos(n\theta) + i \sin(n\theta)$$
 C'est la **formule de MOIVRE**.

4° - Conséquences :

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2}$ \rightarrow ce sont les **formules d'EULER**.

IV/- LES COMPLEXES ET

LES TRANSFORMATIONS:

1°- Translation :

 \blacktriangle

Soit une translation de vecteur \vec{U} d'affixe a ; le point M (d'affixe z) est transformé en un point M' (d'affixe z') tel que :

 $\overrightarrow{MM'} = \overrightarrow{U}$ donc z' - z = a d'où :

L'expression complexe d'une translation est : z' = z + a; où a est l'affixe du vecteur de translation.

2°- Homothétie :

Soit une homothétie de rapport \underline{k} (\in IR*) et de centre Ω d'affixe w; Le point M (d'affixe z) est transformé en un point M' (d'affixe z') tel que : $\overline{\Omega M'} = k.\overline{\Omega M}$ Donc z' - w = k. (z - w) D'où l'expression complexe d'une homothétie est : $\underline{z' - w = k. (z - w)}$; Où w est l'affixe du centre et k le rapport de cette homothétie.

 $f: P \rightarrow P$ $M(z) \rightarrow M'(z') / \overline{z' = k. z + b} \quad où \ k \ un \ r\'eel \ \underline{non \ nul}.$

Si $k \neq 1$: on a homothétie de rapport k et de centre Ω $(\frac{b}{1-k})$

3°Rotation:

Si k=1 : on a identité.

Soit une rotation d'angle θ et de centre Ω d'affixe w; le point M (d'affixe z) est transformé en un point M' (affixe z') tel que : l'angle $(\overline{\Omega M}, \overline{\Omega M'}) = \theta$ Donc z' - w = $e^{i\theta}$ (z - w)

D'où l'expression complexe d'une rotation est : $z' - w = e^{i\theta}(z - w)$; Où w est l'affixe du centre et q l'angle de cette rotation.

• L'application qui au point M d'affixe z associe le point M' d'affixe $z'=z.e^{i\theta}$ Où θ est un nombre réel fixé, est la rotation de centre O et d'angle θ .

$$f: P \rightarrow P$$

$$M(z) \rightarrow M'(z') / z' = a. z + b$$

Où a est un nombre complexe <u>de module 1.</u>

Si a=1 : on a identité.

Si $a \ne 1$: on a rotation d'angle Arg(a) et de centre Ω $(\frac{b}{1-k})$

• Le cercle de centre A d'affixe zA et de rayon r est l'ensemble des points M d'affixe z vérifiant : |z - zA| = r